[image: image1.png]
Requirements and Design

	Requirements and design: RD002 v0.1 Mobile Application.doc

	Application name:
	Mobile Application


1 Introduction
1.1 Purpose
This document serves as a foundation for the development of the mobile application of MaGeX project. It contains requirements specifications that define the capabilities of the application. Based on these requirements individual modules of the application are designed. These designs define interfaces between modules.
1.2 Application description

Mobile application is the base part of MaGeX project. Its purpose is to display maps stored in a mobile phone, combine them with user data as a separate map layers and with GPS data.
Description of the MaGeX project and its individual applications and their interaction is described in document RD001.

1.3 Terminology

This document contains tables with requirements using words and phrases that command the presence of some feature, function or deliverable. They are to be interpreted in the following way:

· shall or shall not – used to dictate the provision of a functional capability
· must or must not – used to establish performance requirement or constraint

· is required to – used as an imperative when written in passive voice

· are applicable – used to include, by reference, standards, or other documentation as an addition to the requirement being specified

· will – used to cite things that the operational or development environment is to provide to the capability being specified

· should – used to define optional capability that is preferred to be included

· may – used to define optional capability

1.4 Design

This document contains tables describing interfaces and configuration properties. This information will be used during development, to synchronize between developers.
1.4.1 Interfaces

Each interface table contains methods of one specified class. Description of each method contains method parameters and its return value type.
1.4.2 Configuration properties

Each configuration properties table contains properties of one specified class. This class implements get and set methods for each property. These properties will be configurable by common user interface, described in chapter 6.6.
1.5 Overview of the following document

Chapter 2 defines requirements for data storage, describes data formats and interfaces for other modules to work with stored data. Next, chapter 3 presents functionality of providing GPS data for the rest of the modules. In chapters 4 and 5, communication with server application and with data transfer application and other mobiles is defined. Finally, chapter 6 deals with the user interface.
2 Data storage

2.1 Overview

maps, waypoints, 

optimized for speed, keeping size in mind

2.2 Storage

embedded in JAR

stored in RS

2.2.1 Required configuration properties

any?

2.3 Vector map storage

2.3.1 Overview

polylines, polygons

POI - just regular waypoints?, altitude in feet

	Requirements

	ID
	Description
	Remark

	FR1
	Mobile application shall be able to store vector maps. These maps are created from POIs, polylines and polygons.
	

	
	
	


2.3.2 Data format

lines, polygons

binary, indexes

Maps will be transformed into internal format by desktop application.
2.4 Waypoints storage

2.4.1 Overview

points, as in maps?

position, name, description, elevation?

	Requirements

	ID
	Description
	Remark

	FR2
	Mobile application shall be able to store a defined position as a waypoint. Position shall be specified as a point in a map and as a current position. Along with the position, its name and elevation shall be stored.
	

	
	
	


2.4.2 Data format

points, as in maps?

2.4.3 Search
using indexes?

2.5 Track storage

2.5.1 Overview

chain of waypoints
can be stored automatically from current position (any simplification?)
	Requirements

	ID
	Description
	Remark

	FR3
	Mobile application shall store information retrieved from a GPS module. This shall be done in a form of a track – a sequence of waypoints.
	

	FR4
	Waypoints in a stored track shall be stored in regular intervals. If the application alters the track in a way that the intervals between the waypoints will not stay the same (e.g. it deletes a waypoint), it shall store a time difference between waypoints that create the track.
	


2.5.2 Storage

RMS
3 GPS communication

3.1 Overview

Mobile application will support multiple types of GPS devices. To simplify working with GPS data from other modules of the application a general GPS module interface will be implemented.
3.2 General

3.2.1 Overview

Following text defines general GPS module interface.
	Requirements

	ID
	Description
	Remark

	FR5
	Mobile application shall be able to communicate with GPS devices and use data provided by them.
	

	FR6
	Mobile application shall be able to provide the following information retrieved from GPS devices: current position, speed, course, altitude, time and horizontal and vertical accuracy.
	

	FR7
	Mobile application shall work even without a working GPS device. Functionality that does not depend on GPS data shall not be altered or disabled.
	


3.2.2 Interfaces

	Interface – GPSLocation

	Method
	Description
	Parameters / Return value

	GPSLocation
	
	-

	getLocation
	
	long latitude

long longitude
/ boolean

	getCourse
	Return course in degrees, multiplied by 100.
	/ int

	getSpeed
	
	/ int

	getTimestamp
	
	/ long

	getGPSType
	
	/ int type

	isValid
	
	/ boolean

	getHorizontalAccuracy
	
	/ long

	getVerticalAccuracy
	
	/ long

	
	
	

	
	
	


	Interface – GPSListener

	Method
	Description
	Parameters / Return value

	locationUpdated
	
	GPSProvider provider

location

	providerStateChanged
	
	GPSProvider provider

int newState

	
	
	

	
	
	


	Interface – GPSProvider

	Method
	Description
	Parameters / Return value

	GPSProvider
	
	-

	getLocation
	
	/ GPSLocation

	getActualLocation
	
	int timeout

/ GPSLocation

	getState
	
	/ int

	reset
	
	-

	addLocationListener
	
	GPSListener listener

int interval

int maxAge

	removeLocationListener
	
	GPSListener listener

	
	
	


	Interface – GPSException

	Method
	Description
	Parameters

	
	
	

	
	
	

	
	
	

	
	
	


	Interface – Constants

	Type
	Value
	Name
	Description

	GPS state
	0
	OUT_OF_SERVICE
	No GPS device can be found.

	
	1
	TEMPORARILY_UNAVAILABLE
	GPS device available, but no data available.

	
	2
	AVAILABLE
	GPS data available.

	GPS type
	0
	GPS_NONE
	

	
	1
	GPS_LAPI
	

	
	2
	GPS_SERIAL
	

	
	3
	GPS_BLUETOOTH
	

	
	4
	GPS_SIMULATOR
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	


3.2.3 Example of use

sequence diagram

3.2.4 Required configuration properties

	Configuration properties – GPSLocation

	Item
	Description
	Property

	GPS type
	Type of GPS device. Possible values: None, Location API, Serial, Bluetooth, Simulator.
	int GPStype

	
	
	


3.3 Location API

3.3.1 Overview

General GPS module interface is derived from Location API (JSR 179) interface. Implementing this interface is merely wrapping its methods. Some of the functionality is simplified.
	Requirements

	ID
	Description
	Remark

	FR8
	Mobile application shall be able to communicate with GPS devices using Location API (JSR 179).
	


3.3.2 Connection

create an instance, register listener

3.3.3 Required configuration properties
No configuration is required.
3.4 Serial

3.4.1 Overview

usually internal device, passive communication

	Requirements

	ID
	Description
	Remark

	FR9
	Mobile application should be able to communicate with GPS devices using a serial port.
	


3.4.2 Connection

port open – StreamConnection, read loop

3.4.3 Data format

NMEA only?

3.4.4 Required configuration properties

	Configuration properties – GPSLocation

	Item
	Description
	Property

	Comm port
	Serial port used to connect to the GPS device.
	int commPort

	Baud rate
	Baud rate used to communicate with the GPS device.
	int baudRate

	
	
	


3.5 Bluetooth

3.5.1 Overview

regular device discovery, then as serial

	Requirements

	ID
	Description
	Remark

	FR10
	Mobile application shall be able to communicate with GPS devices using Bluetooth.
	


3.5.2 Connection

find available devices, select one, open port

try to connect to predefined device?

3.5.3 Required configuration properties

will need any? predefined device?

3.6 Simulator

3.6.1 Overview

useful for testing – development and maps

	Requirements

	ID
	Description
	Remark

	FR11
	Mobile application should offer a user an internal GPS device simulator.
	

	
	
	


3.6.2 Patterns simulated
circle, clockwise direction
3.6.3 Required configuration properties

	Configuration properties – GPSLocation

	Item
	Description
	Property

	Center position
	Position of the circle center used to simulate GPS device.
	long simulatorCenterX

long simulatorCenterY

	Radius
	Radius in meters of the circle center used to simulate GPS device.
	long simulatorRadius

	Speed
	Speed in m/s used to simulate GPS device.
	int simulatorSpeed

	
	
	


4 Communication with the server

4.1 Overview

Mobile application will communicate with the server application to send its current position and to retrieve position of other users. Apart from this, mobile phones running this application may be used to track moving vehicles. Functionality required for all these tasks is described in the following text.
	Requirements

	ID
	Description
	Remark

	FR12
	Mobile application shall be able to send the information returned by a GPS device to the server application. This information shall include user’s current position, speed and altitude.
	

	FR13
	It shall be possible to send the information once and continuously in defined time interval.
	

	FR14
	Mobile application shall allow the user to receive information about other users from the server application.
	

	FR15
	Mobile application shall allow the user to specify which users are allowed to receive his/her position information.
	

	FR16
	Mobile application should be able to automatically start sending GPS information when the current position is more than a predefined distance from predefined position.
	

	FR17
	If the mobile application fulfils FR16, it shall be able to process requests sent from the server, once it starts sending GPS information.
	

	FR18
	If the mobile application fulfils FR17, it shall be able to stop sending GPS information upon request. This request shall include a time period for which the mobile application will cease to send the data. 
	

	FR19
	If the mobile application fulfils FR17, it shall be able to change the parameters based on which it automatically sends the GPS information upon request.
	

	FR20
	If the mobile application fulfils FR17, it shall implement authorization in server requests processing.
	

	FR21
	Mobile application may request and process track data between two specified positions from the server application.
	


4.2 Connection establish

Communication between mobile and server applications will be done using a TCP connection. Mobile application will use SocketConnection class and establish a connection using open("socket://server:port "). It will then open input and output streams and keep the connection open. It will offer asynchronous and non-blocking communication interface for the rest of the application. In case of an error a listener will be called.
First message sent to the server identifies the mobile application. This will be used to identify the mobile application and the user working with it. Server application will respond with its identification, acknowledging the connection.

4.3 Position sending

When configured, mobile application will send information retrieved from a GPS device to the server application in regular intervals. This will include current position, speed, altitude and course. Configuration will be done using common user interface.

Position information may be sent asynchronously as well, using defined interface method. If mobile application is not connected to the server, it will establish a connection.
4.4 Buddy position requests

Mobile application can subscribe to receiving position information about other users. If the user data is available, server application will regularly send updates about subscribed users. Before other users can receive user information, he/she has to grant access to this data. This shall be allowed specifically for individual users or generally for all users.
4.5 Parking tracking

Parking tracking allows to use a mobile phone as a tracking device, e.g. in vehicles. Before activating this function user has to enter parking position and maximum distance the phone can move away from the parking position. Once the phone stays out of this distance for more than 1 minute, it shall connect to the server and start sending its position in regular intervals. This shall be the same interval as for position sending requested by the user.

Position sending shall stop after the phone stays within the specified distance for more than 1 minute.
4.6 Server commands

Server application may request current position and mobile application shall respond to this request.

Parking tracking shall be suspended after receiving an administrative command from the server application. Position sending shall be suspended for specified time interval. Tracking parameters may be updated by the server.
4.7 Data format

Following text describes messages exchanged between mobile and server application.

4.7.1 Special data types

Some messages data items will use variable data length. In such a case will be the item prefixed with its length, not counting the prefix itself. Length of the prefix is specified in the item type column in following tables.
4.7.2 Connection establish

	Protocol information – Connection establish (mobile)

	Length
	Type
	Description

	2 B
	String
	Header, fixed text: “CE”

	1 B
	byte
	Mobile protocol version, fixed value: 1

	15 B
	String
	IMEI, if known

	variable
	1B‑length‑prefixed
	Login

	variable
	1B‑length‑prefixed
	Password

	2 B
	byte[]
	Checksum


Server shall respond with CE message. Possible error codes: OK, AUTH_FAIL, VER_NSUPP, INV_CHKS, INV_DATA.
	Protocol information – Connection establish (server)

	Length
	Type
	Description

	2 B
	String
	Header, fixed text: “CE”

	1 B
	byte
	Server protocol version, fixed value: 1

	2 B
	byte[]
	Checksum


In case of an error, mobile shall respond with MR message. Possible error codes: VER_NSUPP, INV_CHKS.
4.7.3 Mobile information

	Protocol information – Mobile information

	Length
	Type
	Description

	2 B
	String
	Header, fixed text: “MI”

	3 B
	byte[]
	Current latitude in degrees, multiplied by 100000 and packed

	4 B
	byte[]
	Current longitude in degrees, multiplied by 100000 and packed

	2 B
	short
	Current speed in m/s, multiplied by 100

	2 B
	short
	Current altitude in meters, multiplied by 100

	2 B
	short
	Current course in degrees, multiplied by 100

	2 B
	byte[]
	Checksum


Server shall respond with SR message. Possible error codes: OK, INV_CHKS, INV_DATA.
4.7.4 Mobile requests

	Protocol information – Track user

	Length
	Type
	Description

	2 B
	String
	Header, fixed text: “TU”

	1 B
	String
	‘1’ = start tracing, ‘0’ = stop tracing

	variable
	1B‑length‑prefixed
	User name (his/her login)

	2 B
	short
	Time interval in which information should be sent in seconds

	2 B
	byte[]
	Checksum


Server shall respond with SR message. Possible error codes: OK, INV_CHKS, INV_DATA, USR_NEX.
	Protocol information – Grant access

	Length
	Type
	Description

	2 B
	String
	Header, fixed text: “GA”

	1 B
	String
	‘3’ = grant access to all users, ‘2’ = grant access to specified user, ‘1’ = revoke access from specified user, ‘0’ = revoke access from all users

	variable
	1B‑length‑prefixed
	User name (his/her login);

Value has no meaning unless previous item is set to ‘2’ or ‘1’

	2 B
	byte[]
	Checksum


Server shall respond with SR message. Possible error codes: OK, INV_CHKS, INV_DATA, USR_NEX.
	Protocol information – Are you alive

	Length
	Type
	Description

	2 B
	String
	Header, fixed text: “AA”

	2 B
	byte[]
	Checksum


Server shall respond with SR message. Possible error codes: OK, INV_CHKS.
Mobile application may use this message to keep the connection open.
4.7.5 Server responses

	Protocol information – Server response

	Length
	Type
	Description

	2 B
	String
	Header, fixed text: “SR”

	2 B
	short
	Error code

	2 B
	byte[]
	Checksum


In case of an error, mobile shall respond with MR message. Possible error codes: INV_CHKS, INV_DATA.
4.7.6 Server commands
	Protocol information – Request position

	Length
	Type
	Description

	2 B
	String
	Header, fixed text: “RP”

	2 B
	byte[]
	Checksum


Mobile shall respond with MR message and followed by MI message if error code was OK. Possible error codes: OK, INV_CHKS, NO_DATA.
	Protocol information – Stop parking tracking

	Length
	Type
	Description

	2 B
	String
	Header, fixed text: “ST”

	variable
	String
	Parking password

	4 B
	int
	Interval during which MI messages generated by parking tracking should not be sent, in seconds. Zero value means they should be sent again.

	2 B
	byte[]
	Checksum


Mobile shall respond with MR message. Possible error codes: OK, AUTH_FAIL, INV_CHKS, INV_DATA.

Mobile application may close the connection after this command and reestablish a new one after specified time.
	Protocol information – Change parking tracking parameters

	Length
	Type
	Description

	2 B
	String
	Header, fixed text: “PT”

	variable
	String
	Parking password

	1 B
	String
	‘1’ = changing tracking activation, ‘0’ = no change

	1 B
	String
	‘1’ = enable parking tracking, ‘0’ = disable parking tracking;

Value has no meaning unless previous item is set to ‘1’

	1 B
	String
	‘1’ = changing parking position, ‘0’ = no change

	3 B
	byte[]
	Parking position latitude in degrees, multiplied by 100000 and packed;

Value has no meaning unless previous item is set to ‘1’

	4 B
	byte[]
	Parking position longitude in degrees, multiplied by 100000 and packed;

Value has no meaning unless second to the previous item is set to ‘1’

	1 B
	String
	‘1’ = changing tracking distance, ‘0’ = no change

	4 B
	int
	Parking tracking distance in meters;

Value has no meaning unless previous item is set to ‘1’

	2 B
	byte[]
	Checksum


Mobile shall respond with MR message. Possible error codes: OK, AUTH_FAIL, INV_CHKS, INV_DATA.

	Protocol information – Are you alive

	Length
	Type
	Description

	2 B
	String
	Header, fixed text: “AA”

	2 B
	byte[]
	Checksum


Mobile shall respond with MR message. Possible error codes: OK, INV_CHKS.

Server application may use this message to keep the connection open.

	Protocol information – User information

	Length
	Type
	Description

	2 B
	String
	Header, fixed text: “UI”

	variable
	1B‑length‑prefixed
	User name (his/her login)

	3 B
	byte[]
	User latitude in degrees, multiplied by 100000 and packed

	4 B
	byte[]
	User longitude in degrees, multiplied by 100000 and packed

	2 B
	short
	User speed in m/s, multiplied by 100

	2 B
	short
	User altitude in meters, multiplied by 100

	2 B
	short
	User course in degrees, multiplied by 100

	2 B
	byte[]
	Checksum


Mobile shall respond with SR message. Possible error codes: OK, INV_CHKS, INV_DATA, USR_NEX.

When the server application decides that user information is no longer valid, it will send all GPS information zeroed. This will indicate that no more updates will be sent and mobile application should try to subscribe to the data again. Same behavior will be applied in case the user will revoke access to his/her position.

4.7.7 Mobile responses

	Protocol information – Mobile response

	Length
	Type
	Description

	2 B
	String
	Header, fixed text: “MR”

	2 B
	short
	Error code

	2 B
	byte[]
	Checksum


In case of an error, server shall respond with SR message. Possible error codes: INV_CHKS, INV_DATA.
4.7.8 Server data

Server data messages will be sent after some mobile requests, e.g. requests for map or track data. These requests will be processed asynchronously, i.e. server will respond immediately with SR message and if its error code is OK it will be followed by a data message later.
Current version of mobile application will not request such data; these messages are reserved for future use.
4.7.9 Checksum calculation

Checksum is calculated for all messages using CRC16 algorithm on the message data up to the checksum.
4.7.10 Error codes

	Protocol information – Error codes

	Code
	Name
	Description
	Sent after commands

	
	
	
	Server
	Mobile

	0
	OK
	OK
	all
	all

	1
	AUTH_FAIL
	Authorization failure
	CE, TU
	ST, PT

	2
	VER_NSUPP
	Protocol version not supported
	CE
	CE

	3
	MESG_NREC
	Message type not recognized
	all
	all

	4
	INV_CHKS
	Invalid checksum
	all
	all

	5
	INV_MESG
	Invalid message format
	
	

	6
	INV_DATA
	Invalid data
	all
	all

	7
	USR_NEX
	User does not exist
	TU
	UI

	8
	NO_DATA
	No data available
	TU
	RP


4.8 Error handling

4.8.1 Invalid data

Each side of the communication shall close the connection after sending 3 consecutive responses with error codes MESG_NREC or INV_CHKS. This will ensure that miscommunication between parties is resolved correctly. If the mobile application is not able to send at least one MI message in 3 consecutive connections it may decide to stop connecting to the server. Server application should notify the receivers in such a case.
4.8.2 Inactivity

Each side of the communication may close the connection after 10 minutes since the last message was transferred. To keep the connection open AA messages may be sent. It is important to realize that mobile carriers can close connections after shorter time interval. Mobile application may detect that and send AA messages in interval shorter than detected maximum allowed inactivity time.
4.9 Interfaces

	Interface – ServerConnection

	Method
	Description
	Parameters

	ServerConnection
	
	String login

String password

String objectName

ServerSettingsListener listener

	connect
	
	

	run
	
	

	sendPosition
	Send current position.
	

	sendTraceRequest
	Request tracing specified object.
	String objectName

	setTraceListener
	
	TraceListener listener

	
	
	


	Interface – TraceListener

	Method
	Description
	Parameters

	positionChanged
	Called when new information about traced object is retrieved from the server.
	int x

int y

	
	
	


	Interface – ServerSettingsListener

	Method
	Description
	Parameters

	serverError
	
	int errNo

	serverSettingsChange
	
	int type

int param

	
	
	


4.10 Required configuration properties

	Configuration properties – ServerConnection

	Item
	Description
	Property

	Name
	Server name or IP address mobile application should connect to.
	String serverName

	Port
	Server port number mobile application should connect to.
	int serverPort

	Login
	User name used to authenticate to the server.
	String login

	Password
	Password used to authenticate to the server.
	String password

	Interval
	Non-zero value specifies interval in seconds in which information about current position shall be sent to the server (MI messages).
	int interval

	Parking tracking
	Whether to track current position and start sending current position when moved away.

On/off value.
	boolean parkingTracking

	Parking password
	Password for server commands related to parking tracking.
	String parkingPassword

	Parking position
	Coordinates. It shall be possible to fill them in with the current position.
	long parkingPositionX
long parkingPositionY

	Trigger distance
	Distance in meters from the parking position when the application should start sending its position.
	long parkingTriggerDistance

	
	
	


5 Communication with the desktop and other mobiles
5.1 Overview

why communicate with the desktop – send stored waypoints, tracks

5.2 Connection establish

device discovery and selection, open a stream

5.3 Data selection

desktop app offers some data – any selection on a mobile?

select data to be sent to the desktop

5.4 Data format
data transfer format

communication protocol

5.5 Post-processing

what should be done in mobile after data is received

5.6 Required configuration properties

any?
6 User Interaction

6.1 Vector map display

6.1.1 Overview

lines, polygons

map is moved so current position is in the center, map can be frozen and user can move the map along the screen

	Requirements

	ID
	Description
	Remark

	FR22
	Mobile application shall be able to display all map information stored by the application. See chapter 2 for the list of map object types.
	

	FR23
	Mobile application shall display user’s current position returned by a GPS module on a map.
	

	FR24
	When the position changes, the application shall move the map so the user’s position is always in the center of the screen.
	


6.1.2 Displaying polygons

library – JMicroPolygon

JSR 184, interface class
6.1.3 Displaying POIs

text, only horizontal

	Requirements

	ID
	Description
	Remark

	FR25
	Mobile application shall allow user to search for cities, streets and other named objects (POIs) stored in maps.
	

	FR26
	POI search shall be performed on name, type, position or a combination of these attributes.
	

	FR27
	POI search position shall be specified as coordinates or as a maximum distance from specified coordinates. Coordinated shall be specified by a WGS84 value, cursor position on a map or by current position returned by a GPS module.
	

	FR28
	User shall be allowed to specify which of the POIs returned by a search should be displayed.
	

	
	
	


6.2 Waypoints display

6.2.1 Overview

	Requirements

	ID
	Description
	Remark

	FR29
	Mobile application shall display stored waypoints in a map.
	

	FR30
	Mobile application shall navigate the user to a selected waypoint. Navigation shall include displaying azimuth and distance to the waypoint.
	

	FR31
	Navigation specified by FR30 shall be allowed to a selected POI too.
	

	FR32
	Mobile application shall allow the user to browse the list of stored tracks and select tracks to be displayed with the map data.
	

	FR33
	Mobile application shall display selected stored tracks in a map.
	

	FR34
	Mobile application shall navigate user along the selected track. This shall be done by navigating to the first waypoint in the track and once the waypoint is reached, switch to the next waypoint.
	

	FR35
	Switching navigation to the next waypoint in the track shall be done automatically once the current position is within predefined distance from the waypoint. Apart from this, user should be allowed to manually skip to the next waypoint and to return to the previous one.
	

	FR36
	During the navigation, mobile application shall display the distance to the end of selected track. The distance shall be calculated as a distance to the selected waypoint and a distance between the next waypoints in the track.
	

	FR37
	Mobile application may use sound or voice to provide the user with navigation commands or information about the track.
	


6.2.2 Display

displaying on screen

waypoints can move – other users’ positions

6.2.3 Search

user input, result, choice

6.2.4 Track creation

choose stored track or link existing waypoints

6.2.5 Navigate

navigate to chosen waypoint

automatically choose next waypoint in track (when?)

6.3 Track browsing

6.3.1 Overview

list of tracks, statistics about each of them, possibility to browse track on a map

	Requirements

	ID
	Description
	Remark

	FR38
	Mobile application shall provide the user with a list of stored tracks. The user shall be able to rename and delete tracks.
	

	FR39
	Mobile application shall provide the user with detailed information about each of the stored tracks. This information shall include total time, horizontal distance, average speed, lowest and highest altitude and vertical distance.
	


6.3.2 Interface

screen descriptions

6.4 External data display

6.4.1 Overview

what kind of data can be displayed - GPS info, waypoints
	Requirements

	ID
	Description
	Remark

	FR40
	Mobile application shall be able to display all information retrieved from GPS modules.
	

	FR41
	Mobile application should allow user to switch between units used to display GPS data – m/ft.
	


6.4.2 Display

when and how data should be displayed

6.4.3 Required configuration properties

define what data should be displayed

6.5 Extra display functionality

6.5.1 Overview

	Requirements

	ID
	Description
	Remark

	FR42
	Mobile application shall allow user to choose from at least two color schemes. One shall be suitable for daylight conditions, another for dark environments.
	

	FR43
	Mobile application may calculate the times of sunrise, sunset, moonrise or moonset for current position.
	


6.5.2 Required configuration properties
6.6 Configuration interface

6.6.1 Overview

general configuration module

6.6.2 Interface

screen descriptions

7 Document History
	Document Name
	Requirements and Design: Mobile Application

	Version
	0.1

	Changes History
	Version
	Author
	Date

	
	0.1
	Rastislav Wartiak
	9.3.2008


RD002 v0.1 Mobile Application.doc

Page: 1/23

